

Penalty function-based volumetric parameterization method for isogeometric analysis

Ye Ji, Mengyun Wang, Maodong Pan, Yi Zhang, Chungang Zhu*

Institute of Computational Science, School of Mathematical Sciences

Dalian University of Technology

Dalian, China

May 11, 2022

< ∃ >

Catalogue

Introduction

Related work

Methodology

Experimental results and comparisons

Conclusions and future work

▲ 臣 ▶ | ▲ 臣 ▶

Isogeometric analysis (IGA)

- Proposed by T.J.R. Hughes et al., 2005.
- **KEY IDEA**: approximate the physical fields with the same basis functions as that used to generate CAD models.
- Advantages:
 - Integration of design and analysis;
 - Exact and efficient geometry;
 - No data type transition and mesh generation;
 - Simplified mesh refinement;
 - High order continuous field;
 - Superior approximation properties.
- Very broad applications: such as shell analysis, fluid-structure interaction, and shape and topology optimization.

< ∃⇒

Problem statement

 However, modern CAD systems usually focus on boundary representations (B-Reps) in solid modeling.

• Problem statement:

- From a given B-Rep, constructing an analysis-suitable parameterization x (a fundamental task in IGA).
- Analysis-suitable parameterizations should
 - be bijective;
 - ensure as low angle and volume distortion as possible.

Framework overview of the proposed method

- Robust and efficient volumetric parameterization method based on penalty function;
- Untangling and minimizing distortion perform simultaneously;
- Avoids extra foldover elimination steps and is very easy-to-implement.

ヨト・イヨト

Introduction

Related work

Methodology

Experimental results and comparisons

Conclusions and future work

▲ 臣 ▶ | ▲ 臣 ▶

Related work - planar parameterization

- Crucial influence of parameterization quality on subsequent analysis: Cohen+2010, Xu+2013a, Pilgerstorfer+2014.
- Planar domain parameterization:
 - Single-patch:
 - Algebraic methods: discrete Coons method [Farin and Hansford 1999], linear methods [Gravesen+2012];
 - Constrained optimization methods: Xu+2011, Gravesen+2014, Ugalde+2018;
 - Variation harmonic mapping [Xu+2013b], PDE-based method [Hinz+2018], Teichmüller mapping [Nian and Chen 2016], low-rank quasi-conformal method [Pan+2018], large elastic deformation method [Shamanskiy+2020];
 - Barrier function method [Ji+2021];
 - Jacobian regularization technique [Garanzha+1999 2021, Wang and Ma 2021].
 - Multi-patch: Xu+2015, Buchegger+2018, Xu+2018, Xiao+2018, Kapl+2017a 2017b 2018 2019, Blidia+2020, Bastl and Slabá 2021, Wang+2022.

Related work - volumetric parameterization

- Compared with the planar problem, constructing analysis-suitable volumetric parameterizations is more challenging both geometrically and computationally.
- Single-block:
 - Constrained optimization methods: Xu+2013c 2017, Wang and Qian 2014
 - Suffer from computing huge amounts of constraints (impractical for large-scale problems);
 - Spline fitting methods: Martin+2009, Lin+2015, Liu+2020, Yuan+2021 Need mesh generation of the discretized computational domains;
 - Barrier function methods: Pan and Chen 2019, Pan+2020 Need an already bijective initialization which is usually difficult to obtain.
- Multi-block: Xu+2013 2017, Lin+2018, Chen+2019 2022, Haberleitner+2019.
- Non-standard B-splines or NURBS: such as C^1 Powell-Sabin splines, toric patches, THB-splines, T-splines, PHT-splines, and Catmull-Clark volumetric subdivision.

4 E K 4 E K

Catalogue

Introduction

Related work

Methodology

Experimental results and comparisons

Conclusions and future work

< 注) < 注)

Problem restatement

• A NURBS parameterization x from the parametric domain $\mathcal{P} = [0,1]^3$ to computational domain Ω is of the following form

$$\mathbf{x}(\boldsymbol{\xi}) = \mathbf{R}^{\mathrm{T}} \mathbf{P} = \sum_{i \in \mathcal{I}_{I}} \mathbf{P}_{i} R_{i}(\boldsymbol{\xi}) + \sum_{j \in \mathcal{I}_{B}} \mathbf{P}_{j} R_{j}(\boldsymbol{\xi}),$$
(1)

where P_i are unknown inner control points and P_j are the given boundary control points.

• **GOAL:** To construct the unknown inner control points **P**_i such that the resulting parameterization **x** is bijective and has the lowest possible angle and volume distortion.

Objective function: Angle distortion

• 3D Most-Isometric ParameterizationS (MIPS) energy [Fu+2015]

$$E_{\rm mips} = \frac{1}{8} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right) \left(\frac{\sigma_2}{\sigma_3} + \frac{\sigma_3}{\sigma_2} \right) \left(\frac{\sigma_1}{\sigma_3} + \frac{\sigma_3}{\sigma_1} \right) = \frac{1}{8} \left(\kappa_F^2(\mathcal{J}) - 1 \right);$$
(2)

• When $\sigma_1 = \sigma_2 = \sigma_3$, the parameterization x has the lowest angle distortion.

Objective function: Volume distortion

• Volume distortion energy term:

$$E_{\rm vol} = \frac{vol(\Omega)}{|\mathcal{J}|} + \frac{|\mathcal{J}|}{vol(\Omega)},\tag{3}$$

where $vol(\Omega)$ denotes the volume of the computational domain Ω ;

• How to calculate $vol(\Omega)$? Divergence Theorem!

$$vol(\Omega) = \iiint_{\Omega} 1d\Omega == \frac{1}{3} \iint_{\partial\Omega} (x_1 \ dx_2 dx_3 + x_2 \ dx_3 dx_1 + x_3 \ dx_1 dx_2);$$
(4)

• Only the given B-Rep is required in (4), and reduces computational costs.

ヨト・イヨト

Problem with the basic objective function

Recall the MIPS energy

$$E_{\rm mips} = \frac{1}{8} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right) \left(\frac{\sigma_2}{\sigma_3} + \frac{\sigma_3}{\sigma_2} \right) \left(\frac{\sigma_1}{\sigma_3} + \frac{\sigma_3}{\sigma_1} \right) = \frac{1}{8} \left(\frac{(\sigma_1^2 + \sigma_2^2 + \sigma_3^2) (\sigma_2^2 \sigma_3^2 + \sigma_1^2 \sigma_3^2 + \sigma_1^2 \sigma_2^2)}{|\mathcal{J}|^2} - 1 \right);$$
(5)

- The Jacobian determinant $|{\cal J}|$ appears in the denominator, which forms a barrier and suppresses foldovers;
- However, the **prerequisite is to find an already bijective initialization**, which is difficult to obtain efficiently for complex computational domains;
- Several previous works [Pan+2020, Ji+2021] try to handle this issue by "extra" foldovers elimination steps (usually complicated and time-consuming).

Initialization

Initial parameterization.

• The Initialization is obtained by minimizing the smoothness energy (often NOT bijective)

$$\iiint_{\mathcal{P}} \|\Delta \mathbf{x}\|^2 \ \mathrm{d}\mathcal{P},\tag{6}$$

where
$$\Delta = \frac{\partial^2}{\partial \xi_1^2} + \frac{\partial^2}{\partial \xi_2^2} + \frac{\partial^2}{\partial \xi_3^2}$$
;

- With many foldovers.
 - Next step is untangling and minimizing distortion.

0.8

-0.4

-0.8

< ∃⇒

Basic idea: Penalty function and Jacobian regularization

• Penalty function:

$$\chi(|\boldsymbol{\mathcal{J}}|,\varepsilon,\beta) = \begin{cases} \varepsilon \cdot e^{\beta(|\boldsymbol{\mathcal{J}}|-\varepsilon)} & \text{if } |\boldsymbol{\mathcal{J}}| \leq \varepsilon \\ |\boldsymbol{\mathcal{J}}| & \text{if } |\boldsymbol{\mathcal{J}}| > \varepsilon \end{cases},$$
(7)

where ε is a small positive number and β is a penalty coefficient;

- $\chi(|\mathcal{J}|, \varepsilon, \beta)$ equals a small positive number if $|\mathcal{J}| < \varepsilon$, and strictly equals the Jacobian determinant $|\mathcal{J}|$ if $|\mathcal{J}| \ge \varepsilon$;
- Consequently, $\frac{1}{\chi^2(|\mathcal{J}|,\varepsilon,\beta)}$ have very large values to penalize the negative Jacobians and small values to accept positive Jacobians.

Dalian University of Technology, Ye Ji

Corrected objective function

• With this basic idea, finally, we solve the following optimization problem:

$$\begin{aligned} \underset{\mathbf{P}_{i}, \ i \in \mathcal{I}_{l}}{\arg\min} E^{c} &= \iiint \left(\lambda_{1} E^{c}_{\min s} + \lambda_{2} E^{c}_{vol} \right) \ \mathrm{d}\mathcal{P} \\ &= \iiint \left(\frac{\lambda_{1}}{8} (\kappa_{F}^{2}(\mathcal{J}) \cdot \frac{|\mathcal{J}|^{2}}{\chi^{2}(|\mathcal{J}|, \varepsilon, \beta)} - 1) + \lambda_{2} \left(\frac{vol(\Omega)}{\chi(|\mathcal{J}|, \varepsilon, \beta)} + \frac{\chi(|\mathcal{J}|, \varepsilon, \beta)}{vol(\Omega)} \right) \right) \ \mathrm{d}\mathcal{P}, \end{aligned}$$

$$(8)$$

where \mathbf{P}_i , $i \in \mathcal{I}_I$ are the unknown inner control points.

< ∃⇒

Analytical gradient computation

- During the gradient-based optimization process, an analytical gradient calculation is very important for efficiency and stability;
- Through the chain rule, we have

$$\partial_{p}\kappa_{F}^{2}(\boldsymbol{\mathcal{J}}) = 2 \operatorname{Tr}((\|\boldsymbol{\mathcal{J}}^{-1}\|_{F}^{2}\boldsymbol{\mathcal{J}}^{\mathrm{T}} - \|\boldsymbol{\mathcal{J}}\|_{F}^{2}(\boldsymbol{\mathcal{J}}\boldsymbol{\mathcal{J}}^{\mathrm{T}}\boldsymbol{\mathcal{J}})^{-1})\partial_{p}\boldsymbol{\mathcal{J}}).$$
(9)

and

$$\partial_{p}\kappa_{F,\varepsilon}^{2}(\boldsymbol{\mathcal{J}}) = \frac{\partial_{p}\kappa_{F}^{2}(\boldsymbol{\mathcal{J}})|\boldsymbol{\mathcal{J}}|^{2} + 2\kappa_{F}^{2}(\boldsymbol{\mathcal{J}})|\boldsymbol{\mathcal{J}}|\partial_{p}|\boldsymbol{\mathcal{J}}|}{\chi^{2}} - 2\kappa_{F,\varepsilon}^{2}(\boldsymbol{\mathcal{J}})\frac{\partial\chi}{\partial|\boldsymbol{\mathcal{J}}|}\frac{\partial_{p}|\boldsymbol{\mathcal{J}}|}{\chi};$$
(10)

• Eventually, we obtain the partial derivatives of the corrected objective function

$$\partial_{p}\kappa_{F,\varepsilon}^{2}(\boldsymbol{\mathcal{J}}) = \frac{\partial_{p}\kappa_{F}^{2}(\boldsymbol{\mathcal{J}})|\boldsymbol{\mathcal{J}}|^{2} + 2\kappa_{F}^{2}(\boldsymbol{\mathcal{J}})|\boldsymbol{\mathcal{J}}|\partial_{p}|\boldsymbol{\mathcal{J}}|}{\chi^{2}} - 2\kappa_{F,\varepsilon}^{2}(\boldsymbol{\mathcal{J}})\frac{\partial\chi}{\partial|\boldsymbol{\mathcal{J}}|}\frac{\partial_{p}|\boldsymbol{\mathcal{J}}|}{\chi}.$$
 (11)

Reduced numerical integration scheme

Bi-cubic NURBS parameterization: 4×4 Gaussian integration points for the layer elements and 2×2 points for the inner elements.

- **OBSERVATION**: the Jacobians vary greatly near the boundary, but are often relatively flat inside.
- More integration points for the layer elements, and fewer integration points for the inner elements.
- In addition, we precompute the basis functions before iteration to further improve the computational efficiency.

Catalogue

Introduction

Related work

Methodology

Experimental results and comparisons

Conclusions and future work

Introduction Related work Methodology Results Conclusions

Parameterization results from different initialization methods

Same point

- The resulting parameterizations are almost the same from different initializations.
- It means our method converges to the same minimum and is insensitive to different initializations.

Robustness test

• Rotated cuboids parameterized by tri-cubic NURBS solids.

Quality metrics:

• Scaled Jacobian (optimal value 1):

$$m_{SJ} = \frac{|\mathcal{J}|}{\|\mathbf{x}_{\xi_1}\| \cdot \|\mathbf{x}_{\xi_2}\| \cdot \|\mathbf{x}_{\xi_3}\|}.$$

• **Uniformity metric** (optimal value 0):

$$m_{unif.} = (rac{|\mathcal{J}|}{vol(\Omega)} - 1)^2.$$

Dalian University of Technology, Ye Ji

May 11, 2022

21 / 31

Six more complicated models

May 11, 2022

Analysis-suitable Volumetric Parameterization for IGA

22 / 31

Comparison: Reduced numerical integration vs. high precision integration

- Reduced integration strategy is adopted to accelerate the proposed method. However, *will this cause a loss of parameterization quality?*
- NO! The absolute differences of quality metrics are extremely close to 0.

Comparison: Reduced numerical integration vs. high precision integration

• However, it dramatically reduces the computational costs.

Dalian University of Technology, Ye Ji

May 11, 2022

Influence of different proportions of parameters λ_1 and λ_2

Dalian University of Technology, Ye Ji

May 11, 2022

Analysis-suitable Volumetric Parameterization for IGA

25 / 31

Comparison: Our method vs. current competitive approaches

- We compare our method with two current competitors, i.e., Pan et al. 2020 and Liu et al. 2020.
- Positive values (red regions) indicate our method has lower angle distortion and/or lower volume distortion.

Efficiency: Our method vs. current competitive approaches

- Our method \gg Pan et al. (2020);
- First three small-scale models, our method \approx Liu et al. (2020);
- Last three large-scale models, our method > Liu et al. (2020).

27 / 31

Application to IGA simulation: Poisson's problem

May 11, 2022

Introduction

Related work

Methodology

Experimental results and comparisons

Conclusions and future work

< 注) < 注)

Conclusions and future work

- Conclusions:
 - A penalty function-based volumetric NURBS parameterization method is proposed;
 - The volumes of computational domains are computed from the given B-Reps;
 - Full analytical gradient is deduced to enhance the efficiency and robustness;
 - Reduced numerical integration strategy is developed to enhance computational efficiency;
 - Numerical experiments demonstrate the effectiveness and robustness of our method.
- Future work:
 - Role of the inner weights on volumetric parameterization;
 - Extend our parameterization method to high genus computational domains;
 - In addition, we will release all of the models and our reference implementation in Geometry + Simulation Modules (G+Smo) library.

Q&**A**.

jiye@mail.dlut.edu.cn

< ∃ >