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IsoGeometric Analysis (IGA)

Source: Figure from [Cottrell et al. 2009]

● Proposed by T.J.R. Hughes et al., 2005.

● KEY IDEA: approximate the physical fields with the same
basis functions as that used to generate CAD models.

● Advantages:
● Integration of design and analysis;
● Exact and efficient geometry;
● No data type transition and mesh generation;
● Simplified mesh refinement;
● High order continuous field;
● Superior approximation properties.

● Very broad applications: such as shell analysis,
fluid-structure interaction, and shape and topology
optimization.
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Research motivation
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physical field 

● Most modern CAD systems only focus on boundary
representations (B-Reps) in geometry modeling.

● Problem statement:

● From a given B-Rep, constructing an
analysis-suitable parameterization x.

● Analysis-suitable parameterizations should
● be bijective;
● ensure as low angle and volume

distortion as possible.
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Problem statement

● A spline-based parameterization x from a parametric domain P = [0,1]d (d = 2,3) to
computational domain Ω is of the following form

x(ξ) =RTP = ∑
i∈II

PiRi(ξ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unknown

+ ∑
j∈IB

PjRj(ξ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
known

, (1)

where Pi are unknown inner control points and Pj are given boundary control points.

● GOAL: To construct the unknown inner control points Pi such that x is bijective
and has the lowest possible angle and area/volume distortion.
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Objective function: angle distortion

● Most-Isometric ParameterizationS (MIPS) energy [Hormann and Greiner 2000, Fu et
al. 2015]:

Eangle(x) =

⎧⎪⎪
⎨
⎪⎪⎩
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(2)

where σi are the singular values of the Jacobian matrix J of the parameterization x.

● When σ1 = σ2 = . . . = σd, x is conformal and Eangle reaches its minimum value.
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1
1
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Objective function: area/volume distortion

● Area/volume distortion energy:

Evol(x) =
∣J ∣

vol(Ω)
+
vol(Ω)

∣J ∣
, (3)

where vol(Ω) denotes the area/volume of the computational domain Ω;

𝒙
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Objective function: variational formulation

● Basic idea: to solve the following constrained optimization problem:

argmin
Pi, i∈II

E(x) = ∫P
(λ1Eangle(x) + λ2Evol(x)) dP,

s.t. x is bijective.

(4)

● Suppose that the given B-Rep is bijective. x is bijective⇔ ∣J (x(ξ))∣ ≠ 0, ∀ξ ∈ P.

● Due to the high-order continuity of x, we need ∣J ∣ > 0 (< 0), ∀ξ ∈ P.
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Treatment of bijectivity constraint

● The Jacobian determinant can be represented by a linear combination of splines

∣J ∣ =∑
i

∣J ∣iNi(ξ) (5)

● Many works handle the bijectivity constraint with inequality constraints ∣J ∣i > 0. [Xu et

al., CMAME 2011, Wang and Qian 2014]

● However, the number of the constraints can be huge. [Pan et al., CMAME 2020, Ji et al. JCAM

2021]. (To a bi-cubic planar NURBS parameterization with 20 × 20 control points, the
number of inequality constraints is over 34k.)
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Equivalence problem: unconstrained optimization

● Recall the planar MIPS energy,

E2D
angle(x) =

σ2
1 + σ

2
2

σ1σ2

=
trace(J TJ )

∣J ∣
.

Since the Jacobian determinant appears in its denominator, it proceeds to infinity if the
Jacobian determinant ∣J ∣ approaches zero.

● Remove the constraints and solve the following unconstrained optimization problem:

argmin
Pi, i∈II

E(x) = ∫P
(λ1Eangle(x) + λ2Evol(x)) dP. (6)
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Hybrid L-BFGS (HLBFGS) solver (NEW in G+Smo!)
(https://xueyuhanlang.github.io/software/HLBFGS/)

● A framework for unconstrained optimization problems written by Yang Liu (Microsoft

Research Asia).
● Light-weight and freely available for non-commercial purposes;
● Unifies common optimization methods, such as gradient-decent method, (Preconditioned)

L-BFGS method, (Preconditioned) Conjugate Gradient method, and Newton’s method.
● Very popular in computer graphics community.

● Already integrated into G+Smo (stable):
● Example: examples/optimizer example.cpp;
● G+Smo wrapper: /extensions/gsHLBFGS/gsHLBFGS.h;
● Source codes: /external/HLBFGS.
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Basic usage of HLBFGS solver (NEW in G+Smo!)

1 template <typename T>

2 class gsOptProblemExample : public gsOptProblem<T> {

3 public:

4 // The constructor defines all properties of our optimization problem

5 gsOptProblemExample() {};

6
7 // The evaluation of the objective function must be implemented

8 T evalObj(const gsAsConstVector<T> &u) const {};

9
10 // The gradient (resorts to finite differences if unimplemented)

11 void gradObj_into(const gsAsConstVector<T> &u, gsAsVector<T> &result) const {};

12 ...

13 }
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Basic usage of HLBFGS solver (NEW in G+Smo!)

1 int main(int argc, char* argv[]){

2 ...

3 gsOptProblemExample<real_t> problem;

4 gsHLBFGS<real_t> *optimizer;

5
6 // Set stopping criterion for iteration (optional)

7 optimizer->options().setInt("MaxIterations", 200);

8 optimizer->options().setInt(...);

9
10 // Set initial guess (optional)

11 gsVector<real_t> initialGuess;

12 initialGuess << ...;

13
14 // Solve

15 optimizer->solve(initialGuess);

16 ...

17 }
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Initialization

Initial parameterization.

● Many algebraic methods can be adopted to
initialize:
● Discrete Coon’s patch [Farin and Hansford 1999];
● Spring patch [Gravesen et al. 2012];
● Smoothness energy minimization [Wang et al.

2003, Pan et al. 2020];
● ...

● No guarantee of bijectivity.

● However, an already bijective parameterization is
needed in our optimization problem (6).

14 / 36



Barrier function-based parameterization construction

● Three-step strategy.

Foldovers
elimination

Quality 
improvement

Initialization Almost foldover-free Final result
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Foldovers elimination: almost foldover-free parameterization

Foldover-free
Almost 

foldover-free

Parameterization

● Some works solve the following Max-Min problem:

argmin
Pi, i∈II

max
j
∣J ∣j ,

where ∣J ∣j are the expansion coefficients of ∣J ∣.

● High computational costs still but NOT necessary!

● We solve the following problem instead:

argmin
Pi, i∈II

E(x) = ∫P
max (0, δ − ∣J ∣) dP,

where δ is a threshold (δ = 5%vol(Ω) as default).
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Foldovers elimination: almost foldover-free parameterization

gsObjFoldoverFree

1 template<short_t d, typename T>

2 T gsObjFoldoverFree<d, T>::evalObj(const gsAsConstVector<T> &u) const

3 {

4 // update m_mp with the current design

5 convert_gsFreeVec_to_mp<T>(u, m_mapper, m_mp);

6 geometryMap G = m_evaluator.getMap(m_mp);

7
8 // defines the expression of integrand

9 auto EfoldoverFree = (m_delta - jac(G).det()).ppartval();

10 return m_evaluator.integral(EfoldoverFree);

11 }
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Foldovers elimination: almost foldover-free parameterization
● Foldovers elimination is of vital importance. If it fails, everything CRASHES!!!
● For practical purposes, we gradually reduce the δ.

1 ...

2 gsObjFoldoverFree<d, T> objFoldoverFree(mp, mapper);

3 do {

4 T delta = pow(0.1, it) * 5e-2 * scaledArea; // update the parameter delta

5 objFoldoverFree.options().setReal("ff_Delta", delta);

6 objFoldoverFree.applyOptions();

7
8 gsHLBFGS<T> optFoldoverFree(&objFoldoverFree);

9 optFoldoverFree.solve(initialGuessVector); // solve the current problem

10
11 Efoldover = optFoldoverFree.currentObjValue();

12 initialGuessVector = optFoldoverFree.currentDesign();

13 ++it;

14 } while (Efoldover > 1e-20 && it < 10);
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Quality improvement: robustness consideration

● Recall that Eangle proceeds to infinity if the Jacobian determinant J approaches zero.

● DANGER!: discontinuous function value change in numerical optimization.

● Line search ensures sufficient reduction, e.g., strong Wolfe condition.

● With this feature, we simply revise the objective function (barrier function):

Ec
= { ∫P (λ1Eangle(x) + λ2Evol(x)) dP, if min ∣J ∣ > 0,

+∞, otherwise.
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Quality improvement

1 template<short_t d, typename T>

2 template<short_t _d>

3 typename std::enable_if<_d == 2, T>::type

4 gsObjQualityImprovePt<d, T>::evalObj(const gsAsConstVector<T> &u) const

5 {

6 // update m_mp with the current design

7 ...

8
9 // set the objective function value to +\infty if min(jac(G).det()) < 0

10 if (m_evaluator.min(jac(G).det()) < 0){return std::numeric_limits<T>::max();}

11 else {

12 // otherwise, compute the normal objective function value

13 auto Euniform = chi / area + area / chi;;

14 auto Ewinslow = jac(G).sqNorm() / jac(G).det();

15 return m_evaluator.integral(m_lambda1 * Ewinslow + m_lambda2 * Euniform);

16 }

17 }
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Analytical gradient: for stability aspect

● In the class gsOptProblem<T>, we have a default gradObj into() which approximate
the gradient by numerical differentiation

f ′(x) =
−f(x + 2h) + 8f(x + h) − 8f(x − h) + f(x + 2h)

12h
+
h4

30
f (5)(c),

where c ∈ [x − 2h,x + 2h].

● Hard to select a suitable step size h, especically for our problem.
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Analytical gradient: for efficiency aspect
● To a single-patch tri-cubic B-spline parameterization with 25 control points along each
direction (using standard Gauss quadrature rule), 4 ∗ 233 ∗ (3 + 1)3 > 3 M function
evaluations are performed for once line-search.
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Gallery: barrier function-based method
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Penalty function-based parameterization construction

● The foldovers elimination does not improve sufficient to the parameterization quality.

● Avoids extra foldovers elimination steps.

● Untangling and minimizing distortion perform simultaneously!!!

Optimized parameterizationInitializationB-Rep

Untangling & 
Minimizing distortion

Penalty objective function
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Basic idea: Penalty function
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● Penalty function:

χ(∣J ∣, ε, β) = { ε ⋅ eβ(∣J ∣−ε) if ∣J ∣ ≤ ε
∣J ∣ if ∣J ∣ > ε , (7)

where ε is a small positive number and β is a penalty factor;

● χ(∣J ∣, ε, β) equals a small positive number if ∣J ∣ < ε, and
strictly equals the Jacobian determinant ∣J ∣ if ∣J ∣ ≥ ε;

● 1
χ2(∣J ∣,ε,β) have very large values to penalize the negative

Jacobians and small values to accept positive Jacobians.
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Jacobian regularization and revised objective function

● With this basic idea, we solve the following optimization problem:

argmin
Pi, i∈II

Ec
= ∫P

(λ1E
c
mips + λ2E

c
vol) dP

= ∫P
(
λ1

8
κ2F (J ) ⋅

∣J ∣2

χ2(∣J ∣, ε, β)
+ λ2 (

vol(Ω)

χ(∣J ∣, ε, β)
+
χ(∣J ∣, ε, β)
vol(Ω)

)) dP,

(8)
where Pi, i ∈ II are the unknown inner control points.

● Now, only one optimization problem is solved.
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Gallery: penalty function-based results
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Timing comparisons of G+Smo and MATLAB implementations

Vase Tooth Duck Component Monkey
 Models

0
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 Timings (sec.)

11.0 11.9 9.0 8.0 8.9 2.6

49.7 57.9
30.7

287.0

367.2

152.3

646.4

569.0

222.9

  G+Smo
  MATLAB
  MATLAB (reduced)

● G+Smo code is not as fast as we expected.

● Precompute basis functions (unsteady problems and structural optimization).
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G+Smo implementation with OPENMP
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Multi-patch result: multipatch tunnel.xml
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Multi-patch result: yeti footprint.xml
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Compatible to multi-patch THB parameterization
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Application: twin-screw rotary compressor
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Application: twin-screw rotary compressor
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Application: twin-screw rotary compressor
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Thanks for your attention!

Q&A.

y.ji-1@tudelft.nl
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